Autonomic and Vascular Dysfunction in the Elderly

Thomas J. Ebert, MD, PhD, and Andrew Schroeder, BS
Medical College of Wisconsin

- Aging:
 - Epidemiology:
 - In 2006, individuals >65 years old made up 12% of the population, but account for about one third of all surgeries performed in the US\(^1,2\)
 - The fastest growing segment of the US population consists of individuals over the age of 65; their numbers are expected to increase 53.2% by 2020\(^3\)
 - By 2050, seniors will make up 21% of the domestic population
 - The prevalence of cardiovascular disease (CVD) in American males and females aged 65-74 are 68.5% and 75%, respectively. For those aged 75+, prevalence is 77.8% and 86.4%, respectively
 - Chronological age vs. biological age
 - Chronological: unavoidable structural changes in heart & vasculature
 - Rate of chronological aging varies from individual to individual, system to system
 - Biological: net effects of changes due to chronological aging + disease states (HTN, CAT, etc.)
 - Biological age important in risk stratification for anesthesia and postop complications
 - Pre-operative “medical fitness” (a synonym for “successful aging”), rather than chronological age, is a primary determinant of post-operative outcome in the elderly surgical patient\(^4\)
- Vascular Changes
 - Arterial:
 - Structural changes that result in impairment of distensibility:
 - Extracellular matrix composition changes with aging:
 - Decreased production/quality of elastin results in an increased collagen-to-elastin ratio\(^13\)
 - Free radical attack/glycosylation of connective tissue resulting in cleavage, crosslinking, fragmentation of collagen\(^13\) – this results in the formation of advanced glycation end products [AGE]
 - Infiltration of inflammatory/atherosclerotic processes (adhesion molecules, AGE, matrix metalloproteinases, TGF-beta & other pro-inflammatory cytokines)\(^16\)
 - Nitric oxide pathway deteriorates with age
 - Loss of NO-mediated suppression of:
 - vascular smooth muscle proliferation/migration
 - leukocyte adhesion to endothelium
- flux of lipoproteins into vessel walls

- Functional changes as a result of stiffening:
 - Stiffened vessels have increased pulse-wave velocity, widened pulse-pressure, and produce cardiac strain leading to LV hypertrophy and diastolic dysfunction\(^{13}\)
 - Reduced nitric oxide-dependent vasodilation response to acetylcholine\(^{16}\)
 - Decrease in responsiveness to \(\beta\)-receptor stimulation\(^{13}\)
 - In addition to direct effects of \(\beta_1\)-receptor dysfunction on cardiac chronotropy and inotropy, decreases in \(\beta_2\)-mediated vasodilation may also impact the ability of the heart to increase ejection fraction

- Venous
 - Venous system contains \~75\% of the body’s blood volume, provides a buffer to maintain central blood volume\(^{13}\)
 - This buffer is impaired in aged veins due to decreased compliance/smooth muscle contractility\(^{15}\)
 - Elderly hearts with diastolic dysfunction are dependent on venous return to provide adequate atrial pressure to fill the ventricles\(^{13}\)
 - Elderly patients are less able to maintain their systolic blood pressure in the setting of hypovolemia (tilt table test example\(^{14}\))

- Autonomic Changes
 - Impaired baroreflex control of heart rate
 - Increased sympathetic activity
 - Basal levels of catecholamines increase with age (plasma norepinephrine increases 10-15\% per decade)\(^{13}\)
 - Age-dependent reduction in reuptake of norepinephrine by cardiac neurons – higher concentrations of norepinephrine at cardiac \(\beta_1\)-receptor\(^{14}\)
 - Decreased \(\beta\)-receptor responsiveness
 - Impaired 2nd messenger system of the \(\beta\)-receptor (decreased Gs protein/adenyl cyclase coupling with the adrenoceptor moiety) more likely the culprit than changes in \(\beta\)-receptor density.\(^{16}\) This results in:
 - Reduced vascular dilation in response to isoproterenol/epinephrine.
 - Decreased cAMP-mediated vasorelaxation
 - Reduced inotropic response to exercise/catecholamines\(^{15}\)
 - Questionable reduction in chronotropy\(^{15}\)
 - Greater dependency on Frank-Starling mechanics to increase CO during exercise
 - Slightly diminished \(\alpha\)-receptor function
• Number of α_1-receptors well preserved, however there is decreased vasoconstriction at same dose of α-agonist compared with younger subjects14,15
• α_2-receptors show age-related loss, may have implications for intolerance of orthostatic changes
• Decreased α-receptor function compensatory for increased sympathetic outflow?
 - Diminished parasympathetic activity13
 • Reduced vagal tone
 - Diminished heart rate increase to large dose atropine14
 • Reduced response to muscarinic receptor activation
 - Reduction in carbachol-induced inhibition of forskolin-activated adenyl cyclase in muscarinic receptors of aged myocardium15
 - Autoantibodies to M2-muscarinic receptors (positively associated with idiopathic dilated cardiomyopathy) are significantly increased in the elderly16 (significance undetermined)
 - Decreased reflex responsiveness
 • Less tolerant to orthostatic stress/blood loss
 • May in fact be helpful?
 - Hypovolemia not masked by compensatory reflexes (identify earlier)

References

