What are the Endpoints of Resuscitation?

Ronald Pauldine, MD
Clinical Associate Professor
University of Washington School of Medicine
Objective

• Understand the current debate regarding endpoints of resuscitation in shock.

Nothing to disclose
A Few Things to Think About

• Are proposed “endpoints” appropriate for all types of resuscitation?
 – Are endpoints specific for the type of shock being treated?
 – How does a short term “endpoint” influence long term outcome?

• If an “endpoint” can be achieved via different therapeutic approaches what is more important the therapy or the endpoint?
 – Monitors & Outcomes

• If a specific “endpoint” is believed to be important, what confidence do we have in our ability to reliably measure and trend it?
 – What is the comparator (“Gold Standard”) for assessing new technology

Anesthesiology 2010;5:1180
Shock States And Resuscitation

• Shock – Inadequate Tissue Perfusion
 – Classification: Hypovolemic, Cardiogenic, Distributive, Restrictive
 • Uncompensated
 • Compensated

• Goal of Resuscitation
 – Restore tissue oxygenation and cellular homeostasis
 (achieved through therapeutic fluid administration, vasoactive medications, inotropes)
Proposed Targets

• Hemodynamic Measurements
 – Static
 • Filling pressures
 – Dynamic (Functional) (Fluid Responsiveness)
 • Cardiac Output (SV)
 • SPV, SVV, PPV

• Oxygenation (Enhance O2 Delivery)
 – Global
 – Regional

• Other
Bringing a method to the madness

- Proposed Target
- Physiologic Reasoning/Rationale
- Technique(s) of Measurement
- Limitations
- Clinical Application/Data
 - What Population?
 - Outcome Data?
Hemodynamic Targets

• Physiologic Reasoning
 – Optimization of cardiovascular function is important in assuring adequate oxygen delivery
Static Hemodynamic Targets: CVP

• Physiologic Reasoning
 – CVP reflects intravascular volume and RV preload

• Limitations
 – Static, pressure measurement, fails to account for alterations in venous tone and driving pressure

• Clinical Application
 – Meta-analysis: poor correlation between CVP and blood volume/ ΔCVP and fluid responsiveness
Dynamic Hemodynamic Targets: Multiple Methods

• Physiologic Reasoning
 – Provides measurement of CV performance, allows calculation of oxygen delivery

• Multiple Methods
 – Thermodilution
 • PAC
 • Transpulmonary
 – Arterial Catheter Based
 • Pulse Contour Analysis
 – Esophageal Doppler
 – Bioimpedance/Bioreactance
 – Echocardiography

Curr Opin Crit Care 2009;15:239
Dynamic Hemodynamic Targets: Multiple Methods

• Limitations
 – Accuracy of measurements Anesth Analg 2010;111:1180
 – Risks associated with technique (e.g. PAC)
 – Technology Dependent e.g. MV, Dysrhythmia, Valvular heart disease
Dynamic Hemodynamic Targets: Multiple Methods

- Clinical Applications
 - Multiple clinical scenarios, limited data to support (problem of therapeutic algorithm)
Dynamic Targets: Arterial Pressure Analysis

• Proposed Target: Fluid Responsiveness via SPV, SVV, PPV

• Physiologic Reasoning
 – Respiratory variation in parameters reflects fluid responsiveness

• Limitations
 – Multiple other variables impact accuracy: MV, Arrhythmia, Pleural Pressure (Open Chest), Cst, Vt, Chest Wall Compliance, Trend Accuracy

• Clinical Application
Oxygenation Targets

• Physiologic Reasoning:
 – In “compensated” shock states hypoperfusion often exists even when vital signs and other hemodynamic parameters have been “normalized”

Oxygenation Targets

• Global Assessment
 – Metabolic Markers of Tissue Hypoxia
 • Lactate
 • Base Deficit
 • Bicarbonate
 – Venous Oximetry
 • SvO2
 • ScvO2
Global Oxygenation Targets: Metabolic Markers - Lactate

• Physiologic Reasoning
 – Under conditions of inadequate oxygen delivery (or uptake) anaerobic metabolism ensues leading to increased lactate production

• Limitations
 – Not all elevations result from hypoperfusion
 • Type B LA
 • NRTI rx
 • Seizures
 • Beta Agonists
Global Oxygenation Targets: Metabolic Markers - Lactate

• Clinical Application
 – Level on presentation predictive of survival
 • Trauma/Hemorrhage, Burn, AMI, Sepsis
 – Rate of clearance during resuscitation also predictive
 – No obvious cut off or target to guide therapeutic intervention is available
 • Value as a marker vs. “endpoint”
Global Oxygenation Targets: Metabolic Markers – Base Deficit

• Physiologic Reasoning
 – Similar to Lactate. Often thought of as a surrogate for lactate.

• Limitations
 – Affected by other causes of acidosis
 • Hypercholoremia
 • Ketoacidosis
 • Renal Failure
 – Affected by administration of buffers
Global Oxygenation Targets: Metabolic Markers – Base Deficit

• Clinical Application
 – May be more useful than pH
 J Trauma 1998;44:114
 – Initial values predictive of survival
 • Trauma/Hemorrhage, Burn
 J Burn Care Res 2006;27:289
Global Oxygenation Targets: Metabolic Markers – Venous Oximetry

• Rationale
 – Low values of SvO2 and ScvO2 reflect a mismatch between oxygen delivery and demand
 – Early identification and treatment directed at correcting the relationship should lead to improved outcome

• Limitations
 – Differences between SvO2 and ScvO2 based on sampling site
 – Differences in response to pathological states
Global Oxygenation Targets: Metabolic Markers – Venous Oximetry

• Clinical Application
 – Sepsis (as part of EGDT), CV Surgery, Trauma, General Surgery
 – Continuous monitoring best studied (Efficacy of intermittent sampling)
 – While responses in shock states differ, trend between SvO2 and ScvO2 is usually preserved but may be misleading in sepsis

Oxygenation Targets

• Regional Assessment
 – Mucosal Carbon Dioxide Production
 • Gastric Tonometry
 • Sublingual Tonometry
 – Tissue Oxygenation
 • Near Infrared Spectroscopy
Regional Oxygenation Targets: Tonometry

• Rationale
 – Tissue PCO2 increases with ischemia
 – Likely the result of decreased flow rather than dysoxia per se

• Limitations
 – Gastric mucosal pH variable, influenced by acid suppression therapy, enteral feeds, technically difficult to measure
Regional Oxygenation Targets: Tonometry

- Clinical Application
 - Trials in Trauma, Transplant, Cardiac Surgery, Sepsis
 - Most studies suggest correlation with other markers of hypoperfusion
 - No convincing outcome data

Am Surg 2005;71:252
Regional Oxygenation Targets: NIRS

• Rationale
 – Use of differences in absorption in NIR region enables measurement of pO2, pCO2, pH, occlusion methods can be used to estimate VO2

• Limitations
 – Measurements are averages (arterioles, venules, capillaries)
 – Does not measure microcirculation
 – Affected by adipose tissue
 – Lack of standard for measurement values

Curr Opin Crit Care 2008;3:361
Regional Oxygenation Targets: NIRS

• Clinical Application
 – Correlates with organ dysfunction in Trauma
 J Trauma 2007;62:44
 – Inconsistent values in Sepsis
 – Dynamic values with occlusion testing may estimate hypoperfusion

Am J Physiol Heart Circ Physiol 2007; 293:H1065
Novel Targets

• Coagulation
 – Damage control Resuscitation in Massive Transfusion

J Trauma 2007;62:307
Concluding Thoughts

• An ideal “endpoint” does not exist
• No single endpoint is applicable in all clinical situations
• Best approach is likely use of multiple data points (Targets)
• Current data does not conclusively support that use of therapeutic endpoints improves outcome
• Strategies must consider therapeutic approach as well as the target “endpoint”
• Further work is needed to validate “endpoints” and methods of measurement
Thank You